Sunday 9 August 2015

Parasitic Wasps Master Microbiology In Addition To Neurochemistry

Glinting in shimmering shades of blue and green, the emerald cockroach wasp is surely a thing of beauty, but its shimmering exterior masks its cruel nature. The emerald cockroach wasp is one nature’s most impressive neurochemists. At its core, it is a parasite. The female wasp lays her eggs on a cockroach host, and when they hatch, the larvae eat the creature from the inside out.

When she encounters a potential host, the female cockroach wasp first stings the cockroach in its abdomen, temporarily paralyzing its front legs and allowing the wasp to perch precisely on its head. She then stings the roach again, this time delivering venom directly into a part of the roach’s brain called the sub-esophageal ganglia.This doesn’t kill the roach. Instead, it puts the roach in a zombie-like trance.

Cockroaches truly are dirty creatures, and their insides are home to a suite of bacteria that can harm the wasp’s vulnerable larvae. One of these potential threats is Serratia marcescens, a Gram negative bacteria found in cockroach bodies. It’s the same bacteria responsible for a number of human urinary tract infections and the weird pink stains that form in our toilets and showers. In insects, its effects are much more deadly. The bacteria possess a suite of protein-degrading enzymes that cut apart fragile larval cells. The larvae aren’t entirely defenseless, though—as a new study reveals that, larval wasps sterilize their food by secreting antimicrobial compounds.
For many parasitic wasps, microorganisms are a serious concern. Studies on another wasp, Microplitis croceip, found that contamination with Serratia marcescens can lead to a 25% reduction in successful parasite emergence, and even the young that do survive can be infected. When adults are exposed to the bacteria, almost 80% die. 
A study noticed that larval wasps secrete droplets from their mouths that they disperse around before they feed on their cockroach meal. They suspected these secretions kill off potentially deadly bacteria, allowing the larvae to eat in peace. The researchers tested the antimicrobial activity of the oral secretions to see if they were right.When added to bacterial cultures from the cockroach, the droplets killed off a wide variety of bacteria, including the potentially deadly Serratia marcescens.

So, the researchers isolated the secretions and ran them through gas chromatography–mass spectrometry to determine the nature of the substances in them. They found nine compounds previously unknown from the wasps or the cockroaches. In particular, the secretions contained a large percentage of two compounds, a kind of mellein called (R)-(-)-mellein, and micromolide, a natural product that may hold the key to treating drug-resistant tuberculosis. Both compounds showed broad-spectrum antibacterial activity, and the combination of the two was particularly effective. 


These beguiling wasps not only have mastered neurochemistry, they have aced microbiology to become proficient parasites. Already, this tiny wasp has given us great insights into brains through the study of its particularly effective zombification strategy. Now, it is shedding light on another field of science. These small creatures may prove a vital new resource for natural products to fight against human diseases. Who knows what other pharmaceutical secrets are being kept by insects like the emerald cockroach wasp, and what ailments we might be able to treat with their chemical arsenal.
-Dixy

No comments:

Post a Comment

Into the Water by Paula Hawkins - Worth the hype

 Namaste. Question - Have you read the book "The Girl on the Train" by Paula Hawkins? Question again - Did you like it? If your an...